Error analysis of the DtN-FEM for the scattering problem in acoustics via Fourier analysis

نویسندگان

  • George C. Hsiao
  • Nilima Nigam
  • Joseph E. Pasciak
  • Liwei Xu
چکیده

In this paper, we are concerned with the error analysis for the finite element solution of the two-dimensional exterior Neumann boundary value problem in acoustics. In particular, we establish an explicit priori error estimates in H and Lnorms including both the effect of the truncation of the DtN mapping and that of the numerical discretization. To apply the finite element method (FEM) to the exterior problem, the original boundary value problem is reduced to an equivalent nonlocal boundary value problem via a Dirichlet-to-Neumann (DtN) mapping represented in terms of the Fourier expansion series. We discuss essential features of the corresponding variational equation and its modification due to the truncation of the DtN mapping in appropriate function spaces. Numerical tests are presented to validate our theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Plane Wave Discontinuous Galerkin Method with a Dirichlet-to- Neumann Boundary Condition for a Scattering Problem in Acoustics

We consider the numerical solution of an acoustic scattering problem by the Plane Wave Discontinuous Galerkin Method (PWDG) in the exterior of a bounded domain in R2. In order to apply the PWDG method, we introduce an artificial boundary to truncate the domain, and we impose a non-local Dirichlet-to-Neumann (DtN) boundary condition on the artificial curve. To define the method, we introduce new...

متن کامل

Error analysis of an enhanced DtN-FE method for exterior scattering problems

In this workwe analyze the convergence of the high-order Enhanced DtN-FEM algorithm, described in our previous work (Nicholls and Nigam, J. Comput. Phys. 194:278–303, 2004), for solving exterior acoustic scattering problems inR2. This algorithm consists of using an exact Dirichlet-to-Neumann (DtN) map on a hypersurface enclosing the scatterer, where the hypersurface is a perturbation of a circl...

متن کامل

Isogeometric analysis: vibration analysis, Fourier and wavelet spectra

This paper presents the Fourier and wavelet characterization of vibratio...

متن کامل

Spectrally formulated finite element for vibration analysis of an Euler-Bernoulli beam on Pasternak foundation

  In this article, vibration analysis of an Euler-Bernoulli beam resting on a Pasternak-type foundation is studied. The governing equation is solved by using a spectral finite element model (SFEM). The solution involves calculating wave and time responses of the beam. The Fast Fourier Transform function is used for temporal discretization of the governing partial differential equation into a se...

متن کامل

A plane wave discontinuous Galerkin method with a Dirichlet-to-Neumann boundary condition for the scattering problem in acoustics

We consider the numerical solution of an acoustic scattering problem by the Plane Wave Discontinuous Galerkin Method (PWDG) in the exterior of a bounded domain in R2. In order to apply the PWDG method, we introduce an artificial boundary to truncate the domain, and we impose a non-local Dirichlet-to-Neumann (DtN) boundary conditions on the artificial curve. To define the method, we introduce ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 235  شماره 

صفحات  -

تاریخ انتشار 2011